Motion in a straight line

Speed

$$\frac{Average}{Total\ distance\ travelled}{Total\ time\ taken}$$

i.e.

Average speed =
$$\frac{s_1 + s_2 + s_3 \dots}{\left(\frac{s_1}{v_1} + \frac{s_2}{v_2} + \frac{s_3}{v_3} \dots\right)}$$

Instantaneous speed

$$= \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$$

Velocity

Average velocity

$$\bar{v} = \frac{Total\ displacement}{Total\ time\ taken}$$

$$= \frac{\Delta x}{\Delta t}$$

Instantaneous Velocity

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

$$=\frac{dx}{dt}$$

Relative Velocity

(Relative velocity of object A with respect to B)

$$\mathbf{v}_{AB} = \mathbf{v}_A - \mathbf{v}_B$$

Acceleration

Average Acceleration

$$a_{av} = \frac{a_1t_1 + a_2t_2}{t_1 + t_2}$$

Equations of Uniformly Accelerated Motion

(if an object is falling freely under gravity then, value of a is equal to g) Instantaneous Acceleration

$$a_{inst} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 - u^2 = 2as$$

2